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ABSTRACT 
 
Eggplant (Solanum melongena L.) is one of the major vegetable 
crops in the Philippines, significantly contributing to agricultural 
productivity and rural livelihoods. The economic contribution of 
this crop, valued at more than 9 billion pesos in 2024, underscores 
the need to continuously develop new and improved varieties that 
can adapt to the rapidly changing climate. One of the key strategies 
to expedite breeding activities leverages the use of doubled haploid 
technology, which requires the use of precise developmental stages 
of microspores or pollen for in vitro anther culture. This study 
presents Sporesight, a real-time, machine learning-driven desktop 
application designed to automate the classification of eggplant 
pollen developmental stages using object detection techniques. 
Initially, an expertly annotated dataset of 124 unique microscopic 
images, containing 3479 instances spanning seven distinct classes 
corresponding to eggplant microspore developmental stages, was 
used to train an AI model using the YOLOv5 algorithm. The model 
achieved a mean Average Precision (mAP@0.5) of 0.628, with 
high accuracy for morphologically distinct classes but moderate 
confusion for visually similar classes. This AI model was then 
integrated into an intuitive graphical user interface that provides 
image upload and preview, class-wise result visualization, and 
inference capabilities for the captured microscopic field of view, at 
an average time of 2.9 frames per second. As each captured 
microscopic field of view corresponded to a single frame, the 
system delivered inference results within 349 milliseconds. 
Sporesight provides high-throughput capabilities for selecting 
explants with suitable microspore developmental stages for in vitro 
culture, thereby contributing to streamlining the efforts to 
accelerate the development of climate-smart eggplant varieties. 
 

INTRODUCTION 
 
In the Philippines, eggplant (Solanum melongena L.) is one of the 
major vegetable crops, contributing 228.27 thousand metric tons in 
total production volume and valued at more than 9 billion pesos in 
2024 (Philippine Statistics Authority, 2024). Its production plays a 
significant role in Philippine agriculture, supporting both economic 
growth and livelihood security. Therefore, breeding new and 
improved varieties that address critical production challenges is 
key to sustaining bioeconomies, including the eggplant industry 
(Małyska & Jacobi, 2018).  
 
One major prerequisite for a successful eggplant breeding program 
is the availability of pure, highly homozygous lines, which are used 
as parentals. Pure lines, or inbred lines, are traditionally generated 
via successive self-pollination of six to 10 generations (Mir et al., 
2021). However, given the lengthy periods and high costs required 
to obtain homozygous parental lines, an alternative strategy is to 
produce doubled-haploid (DH) lines to shorten the breeding cycle. 
Androgenesis-based techniques, such as in vitro anther culture of 
microspores or pollen grains, are among the most widely used 
methods for producing DH lines by redirecting the developmental 
fate of male gametes toward a sporophytic pathway (Segui-
Simarro, 2021).  
 
The success of haploid induction techniques depends heavily on 
culture conditions, the genotype of the donor plant material, and 
the developmental stage of the microspores or pollen used for in 
vitro culture. In terms of culture conditions, the general 
composition of the culture medium and the application of heat 
stress treatment have largely remained consistent since the seminal 
work of Dumas de Vaulx & Chambonnet (1982), who established 
a reliable and reproducible protocol for haploid embryo induction 
and  doubled  haploid  plant  regeneration in eggplant. Their method  
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involved incubating anthers in darkness at 35°C for 8 days, 
followed by culturing at 25°C in a medium supplemented with 2,4-
D and kinetin to promote the formation of microspore-derived 
embryos (MDEs).  
 
Meanwhile, the genotype-dependent response of eggplant anthers 
to in vitro culture has also been extensively studied (Başay & 
Ellı̇Altioğlu, 2013; Bat et al., 2022; Rivas-Sendra et al., 2017). In 
these studies, the differential sensitivities of the various eggplant 
genotypes to androgenesis were attributed to the unique genetic, 
hormonal, and physiological background of the donor tissues, 
suggesting that the success of an in vitro anther culture is not solely 
determined by the culture conditions but also by the intrinsic 
biological state of the explant during the culture initiation.  
 
The developmental stage of microspores or pollen at the time of 
anther excision and culture initiation is another major factor 
influencing the rate of MDE formation. It is generally accepted that 
the most responsive stage corresponds to the period around the first 
pollen mitosis, when the microspores begin to develop vacuoles 
and form young bicellular pollen (Mir et al., 2021; Rotino, 2016; 
Salas et al., 2012). Morphological indicators such as bud and anther 
lengths are commonly used to approximate the developmental 
stage of microspore or pollen within the anther locules; however, 
this approach does not provide an absolute determination of their 
exact stage.  
 
Cytological characterization of anthers containing inducible 
developmental stages of microspores or pollen is often required to 
ensure the use of appropriately staged donor materials for culture 
initiation (Mir et al., 2021; Rotino, 2016; Salas et al., 2012). This 
process, however, demands a high level of technical expertise and 
typically involves routine use of toxic or hazardous staining 
reagents such as acetocarmine or fluorescent dyes like DAPI (4′,6-
diamidino-2-phenylindole) and FDA (Fluorescein Diacetate), 
which require an expensive epifluorescence microscope for 
viewing. These limitations underscore the need for automated and 
precise tools that can reliably determine microspore and pollen 
developmental stages while reducing technical burden and 
subjectivity. 
 
Convolutional Neural Networks (CNNs), a cornerstone of deep 
learning, have shown remarkable success in image classification 
and object detection tasks by automatically learning hierarchical 
features from raw image data. As demonstrated by García-Fortea 
et al. (2020) through the Microscan system, these approaches can 
accurately and efficiently identify pollen developmental stages 
with minimal human intervention. Despite the success of deep 
learning in microspore characterization, several critical gaps 
remain, which prevent its widespread adoption in routine breeding 
workflows.  
 
First, the existing system operates as a post-processing tool that 
requires high-performance computing; thus, it lacks the capability 
for real-time inference directly from microscope feeds during live 
screening. Second, there is a scarcity of user-friendly software 
interfaces that bridge the gap between complex AI architectures 
and laboratory technicians who may lack programming expertise. 
Third, the dataset of the existing system is not publicly available, 
and the models were trained on foreign germplasm, limiting their 
generalization to the specific local genotypes used in Philippine 
breeding programs. To expound, while the Microscan system 
yielded highly accurate predictions (0.863 mAP), it used the 
RetinaNet architecture, which is typically computationally 

intensive and designed for high-throughput batch analysis. In 
similar studies comparing the performance of various object 
detection algorithms, RetinaNet performed at only up to a third of 
the frames per second of You Only Look Once (YOLO) (Tan et al., 
2021; Yinkfu et al., 2025). This system was also presented 
primarily as a research methodology, with unclear guidance on 
how non-expert end users can use it with no extensive knowledge 
of computer programming. Regarding data annotation, Microscan 
relied on custom labeling workflows (an undisclosed software 
developed by a Spanish company called SomData Analytics) that 
are not readily available as open-source tools.  
 
To address the challenges mentioned, we developed an integrated 
microspore characterization platform called Sporesight. Here, we 
took a different approach to creating a machine learning–driven 
computer vision inference system using YOLOv5. We then 
integrated our machine learning model into an intuitive graphical 
user interface to automate the complex characterization of 
microspore and pollen developmental stages, tailored to the 
biological nuances of eggplants grown in the Philippines. Our 
approach ensured that our model captured the specific microspore 
or pollen morphology of the genotype we used, which may differ 
from that of the accessions used in the previous European study. 
 
 
MATERIALS AND METHODS 
 
Sporesight's development pipeline followed a sequential workflow, 
beginning with eggplant material establishment and microscopic 
image acquisition, during which microspore and pollen images 
were collected and expertly annotated to generate training data. 
The annotated dataset was used to train the machine learning 
model, with iterative validation to optimize hyperparameters and 
ensure robust generalization, followed by performance evaluation 
using an independent test set. The validated model was then 
deployed onto a target inference platform and integrated into a 
user-friendly desktop application to enable real-time prediction of 
pollen developmental stages (Figure 1). 
 

 
Figure 1: Development pipeline for the real-time machine learning-driven 
computer vision inference system for eggplant pollen developmental 
stages. 

Establishment of Plant Materials, Image Dataset Collection, 
and Annotation 
Donor eggplant plants (cv. Mistisa; acc. PH11424) were grown 
under controlled screenhouse conditions at the Institute of Plant 
Breeding, College of Agriculture and Food Science, University of 
the Philippines Los Baños. Solitary floral buds of varying sizes 
were randomly collected from ten (10) different plant replicates to 
ensure representative sampling. Upon dissection, anthers were 
immediately squashed on clean glass slides and examined under a 
phase-contrast microscope (Olympus CKX53). For each sample, 
five randomly selected microscopic fields were captured at 40× 
objective magnification. The resulting images and instances were 
individually annotated using LabelImg, a Python-based graphical 
annotation tool, following the morphological descriptors reported 
by Salas et al. (2012) (Table 1). 
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Table 1: Summary of distinct features of different microsporeand pollen developmental stages (Tetrads, Young Microspore, Mid-Vacuolate Microspore, 
Young Bicellular Pollen, Mid-late Bicellular Pollen, Mature Pollen), as described by Salas et al. (2011). 

DEVELOPMENTAL STAGE DISTINCT FEATURES 
Tetrads Tetrad of cells enclosed in a thick, callose envelope 
 
Young microspore 

 
Free, unicellular microspores with polygonal shape, thin cell wall, and reduced size; large, 
and central nucleus 

 
Mid-Vacuolate Microspore 

 
Free, unicellular microspores with thicker cell walls, rounder shape, and increased diameter; 
vacuolization may be visible 

 
Late/Vacuolate microspore 

 
Free, unicellular microspores with a well-developed cell wall, off-centered nucleus, and are 
larger in diameter; the presence of a large, cytoplasmic vacuole 

 
Young Bicellular Pollen 

 
Round-shaped and relatively bigger in size; has two different nuclei 

 
Mid-late Bicellular Pollen 

 
Larger in size, has a cytoplasmic vacuole, with one nucleus migrating at the center; increased 
opacity 

 
Mature Pollen 

 
High opacity, has a centered nucleus, remarkably denser; appears nearly black under a phase 
contrast microscope 

 
 
One hundred twenty-four (124) unique images, with approximately 
20 microspores per microscopic field of view, were collected and 
annotated using the established descriptors. Annotations were 
categorized into seven distinct developmental classes: tetrad, 
young microspore, mid microspore, late microspore, young pollen, 
mid-late pollen, and mature pollen. To minimize misclassification, 
deformed structures, imaging debris, and artifacts were 
consolidated into a single category designated as 'others'.  
 
A separate test dataset consisting of 78 images was withheld from 
the training process to validate the AI model. The images from this 
test dataset also contained at least 20 instances for each of the seven 
developmental classes, as well as the 'others' category, to ensure 
balanced evaluation across all stages 
 
Development Tools Used 
The model training and validation processes were conducted on a 
machine equipped with an NVIDIA® GTX 1070 GPU (6 GB 
VRAM), 16 GB of RAM, and a 12-core Intel® Core™ i7 processor 
(2.5 GHz). For real-time image acquisition, a ToupTek® 
XCAM1080PHB camera was mounted onto the Olympus® phase-
contrast microscope. Development and integration of the final 
application were carried out on a laptop with an AMD® Ryzen™ 9 
processor and 32 GB RAM. 
 
Sporesight was developed using Python 3.9.6 and PyTorch 2.0, 
with Visual Studio Code™ as the primary development 
environment. Core dependencies included OpenCV 4.11.0 for 
microscope camera image acquisition, PySide6 6.9.0 for graphical 
user interface development, ONNX Runtime 1.19.2 for real-time 
model inference, and NumPy 1.26.4 for numerical operations.  
 
Although the YOLOv8 architecture was initially evaluated, 
YOLOv5 was selected for final deployment due to its greater 
compatibility with the required OpenCV–PyQt integration pipeline 
and its more stable ONNX export workflow at the time of 
development. These considerations were vital given the need for a 
reliable,  real-time  inference  system  that  could  interface  directly  
 

 
 
with microscope camera hardware within a desktop application. In 
addition, YOLOv5 exhibited fewer dependency conflicts with the 
specific library versions required for image acquisition and GUI 
rendering, enabling a more robust and reproducible deployment. 
While model training was performed on a high-performance 
workstation, the final application was designed to run efficiently 
on standard laboratory desktop computers with limited 
computational resources, ensuring accessibility and stable 
performance for routine use by researchers and technicians. 
 
Model Training and Hyperparameters 
The annotated dataset was used to train a YOLOv5 object detection 
model using the Ultralytics framework, and the resulting model 
used the following hyperparameters, summarized in Table 2. Input 
images were resized to 640×640 pixels to match the model's 
expected input dimensions. 
 
Table 2: YOLOv5 training and optimization configuration 
hyperparameters. 

Parameter Value 

Batch 64 

Sub-divisions 64 
Learning Rate 0.001 

Momentum 0.949 
Decay 0.0005 

Data Augmentation Mosaic, HSV adjustments (saturation: 
1.5, exposure: 1.5, hue: 0.1) 

 
AI Model Training Pipeline 
The process began with dataset preparation, where annotated 
images from UPLB-IPB were preprocessed and structured for 
YOLO training. The YOLOv5 model was iteratively trained and 
validated using custom scripts, with each iteration refining 
detection accuracy and class sensitivity. Once performance 
benchmarks were achieved, the trained model was converted to the 
ONNX format and integrated into the desktop application for real-
time inference.
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Figure 2: Representative images of eggplant microspore and pollen developmental stages corresponding to the size and maturity of the flowers.

Evaluation of the Model 
The YOLOv5 model was evaluated using precision and recall—
two key metrics for object detection systems. A precision-recall 
(PR) curve was used to visualize the trade-off between these 
metrics across different confidence thresholds. This allowed for 
fine-tuning of the model to ensure optimal detection sensitivity and 
specificity, especially across closely related stages of microspore 
development (Huda, 2024). 
 
 
RESULTS AND DISCUSSION 
 
Dataset Characteristics 
During the course of the study, we collected and individually 
annotated a total of 3479 eggplant microspores and pollen, with the 
following class distribution: 106 tetrads, 851 young microspores, 
478 mid microspores, 268 late microspores, 167 young pollen, 786 
mid-late pollen, and 358 mature pollen. We also noted 465 debris, 
artifacts, and deformed structures across the image dataset. The 
representative images of various eggplant microspore and pollen 

morphologies in developing floral organ structures are shown in 
Figure 2. 
 
Owing to the inherent developmental asynchrony of microspores 
and pollen within floral tissues, the resulting dataset exhibited an 
uneven class distribution. Such imbalance can bias model 
predictions toward more frequently represented classes (Leevy et 
al., 2018); however, the observed class ratios fall well below the 
thresholds commonly associated with severe class imbalance 
(majority-to-minority ratios of 100:1 to 10,000:1) as defined by He 
and Garcia (2009). Consequently, the dataset was deemed suitable 
for training and used to establish a proof-of-concept model. 
 
AI Model Training and Deployment 
The microspore classification model developed with YOLOv5 was 
evaluated on the designated test set using the confusion matrix and 
precision-recall (PR) curve metrics. Such metrics provide a 
comprehensive understanding of the model's performance across 
per-class accuracy, precision, and recall. The overall results are 
summarized in Table 3. 
 

 

Table 3: Per-class performance metrics of the YOLOv5 model for eggplant microspore and pollen classification. Precision, recall, and F1 scores are 
computed at a confidence threshold of 0.5, while AP (Average Precision) represents the area under the precision-recall curve. 

Class Precision Recall F1 Score AP 

Tetrad 0.6634 0.9710 0.7882 0.935 
Young Microspore 0.5050 0.3054 0.3806 0.934 

Mid Microspore 0.3232 0.2254 0.2656 0.545 
Late Microspore 0.2020 0.4878 0.2857 0.301 

Young Pollen 0 0 0 0.450 
Mid-late Pollen 0.5500 0.3022 0.3901 0.687 

Mature Pollen 0.4900 0.4188 0.4516 0.323 
Others 0.8100 0.6864 0.7431 0.847 

Mean 0.4429 0.4246 0.4131 0.628 

 
Confusion Matrix Analysis 
The confusion matrix revealed differential classification 
performance across different pollen developmental stages (Figure 
3). The YOLOv5 model achieved high recall for visually distinct 
classes, including the others category (81%) and the tetrad stage 
(67%). In contrast, substantial misclassification occurred between 
classes representing adjacent developmental stages. Notably, 49% 
of young microspores were misclassified as mid microspores, 
while 55% of mid microspores were predicted as young 
microspores. A similar reciprocal confusion was observed between 

 
 
mid–late pollen and mature pollen, with nearly half of the instances 
in each class misidentified as the other (Figure 3). 
 
These misclassifications likely reflect the fine-grained, continuous 
nature of microspore and pollen development, in which adjacent 
stages exhibit subtle morphological differences that are difficult to 
resolve visually. Developmental asynchrony within individual 
anthers further contributes to overlapping phenotypic features 
among stages (Salas et al., 2012; Adhikari & Kang, 2017; Pagalla, 
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2023). Nonetheless, this behavior does not undermine the intended 
application of the model for identifying stage ranges suitable for in 
vitro culture; instead, the tendency to interchange predictions 
between neighboring stages captures biologically meaningful 
transitions rather than enforcing artificially discrete class 
boundaries. Overall, the confusion matrix suggests that the primary 
limitation lies in the inherent visual similarity of adjacent 
developmental stages, highlighting the potential benefit of merging 
ambiguous classes and improving dataset balance in future 
iterations. 
 

 
Figure 3: Confusion matrix of the YOLOv5 model illustrating actual vs. 
predicted classification rates for pollen developmental stages. 

Precision-Recall (PR) Analysis 
The Precision-Recall (PR) curve (Figure 4) extends the confusion 
matrix by showing how model confidence varies across classes. 
With a mAP@0.5 of 0.628, the model shows moderate success but 
exhibits apparent performance differences. It performs best on 
visually distinct stages, such as the tetrad (0.935 AP) and young 
microspore (0.934 AP), where it maintains high precision. 
However, it struggles on similar-looking stages, such as the late 
microspore (0.301 AP) and mature pollen (0.323 AP); for these 
classes, any gain in recall results in a sharp drop in precision. When 
combined with the confusion matrix, these results reveal a deeper 
trend: even for high-scoring classes such as the young microspore, 
the model often makes high-confidence errors, frequently 
misclassifying mid microspores. This pattern of confident 
misidentification also appears in the mid-late and mature pollen 
stages. 

 
Figure 4: Precision-Recall performance across various pollen 
developmental stages, showing high precision for the tetrad and young 
microspore classes contrasted against lower performance in late 
microspore and mature pollen stages. 

In terms of practical utility, the observed ambiguity and 
imprecision between developmentally close microspore and pollen 
classes have minimal negative impact on the model's intended 
application. In practice, anthers containing young to mid 
microspore stages are typically selected for in vitro culture, as these 
developmental phases naturally progress toward the inducible late 
microspore to young bicellular pollen stages during culture 
incubation (Salas et al., 2012). This means that even if the model 
occasionally fails to distinguish young from mid microspores, it 
would still effectively identify anthers within the optimal 
developmental window for androgenic induction. Meanwhile, 
discrepancies in discrimination between the late and mature pollen 
stages are not particularly critical, as these stages are already 
differentiated and not amenable to in vitro culture. The observed 
classification overlaps remain acceptable and do not compromise 
the model's practical value for guiding explant selection for in vitro 
anther and isolated microspore culture experiments. 
 
The overall results highlight the viability of using machine 
learning, specifically YOLOv5, for classifying the developmental 
stages of eggplant microspores and pollens. The model 
demonstrated acceptable overall accuracy, with mAP@0.5 = 0.628, 
which aligns with the performance expectations for complex 
microscopic classification tasks involving morphologically similar 
cases. Microscopic image detection mAP values vary widely 
depending on task complexity and specificity, ranging from 
approximately 24% for mixed cell-instance segmentation across 30 
heterogeneous classes to over 95% for specialized single-cell-type 
detection tasks.  
 
For tasks involving morphologically distinct cell types, recent 
studies have reported substantially higher mAP values. For 
instance, leukemia cell detection in bone marrow microscopy 
achieved mAP values of 95.9% for acute lymphoblastic leukemia 
and 98.6% for chronic lymphocytic leukemia using a spatially-
guided learning network (Mei et al., 2025). On the other hand, 
findings from Sazak and Kotan (2024) show that blood cell 
classification tasks using YOLO architectures have similarly 
reported mAP values exceeding 93% when discriminating between 
visually distinct cell categories such as red blood cells, white blood 
cells, and platelets. However, these high-performance results 
reflect the detection of clearly differentiated cell types rather than 
the fine-grained discrimination of temporal stages within a 
continuous biological process. 
 
In more comparable scenarios involving subtle morphological 
distinctions, performance metrics are considerably lower. Sperm 
detection in testicular biopsy images achieved a mAP of 74.1% 
using a two-stage deep detection pipeline (Wu et al., 2021). 
Similarly, histopathology nuclei segmentation tasks have reported 
mAP values of 38-39% on breast tissue datasets (Lagree et al., 
2021), while mixed microscopy cell segmentation across 30 
diverse classes achieved a mean average precision of only 24.37% 
(Khalid et al., 2021). These benchmarks highlight the inherent 
difficulty of microscopic classification tasks where visual 
similarity between classes is high and morphological boundaries 
are ambiguous. 
 
Given that our classification task involves discriminating between 
adjacent developmental stages with subtle morphological 
differences, the observed mAP@0.5 of 0.628 represents acceptable 
performance for this proof-of-concept study. It falls within the mid-
to-upper range of comparable fine-grained microscopic 
classification tasks. The model demonstrated robust performance 
across morphologically distinct classes, such as the tetrad and 
young microspore. Conversely, performance on visually similar 
classes such as late microspore (AP 0.301) and mature pollen (AP 
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0.323) was substantially lower, reflecting the inherent difficulty of 
discriminating between closely related developmental stages. 
 
The misclassifications observed between visually indistinguishable 
stages (e.g., young_microspore vs. mid_microspore) underscore 
limitations in feature representation—a challenge frequently 
encountered in microscopic image classification where intra-class 
variance and inter-class similarity are pronounced due to the 
constraints produced by the restrictions in viewpoints from which 
the microscope images are captured (Venkataramanan et al., 2021). 
 
Desktop Application Development 
Integrating the AI prediction model into a user-friendly desktop 
graphical interface is essential to translate YOLOv5's 
computational power into a practical, accessible tool for bench 
researchers and laboratory technicians engaged in in vitro anther 
culture experiments. To this end, we developed an intuitive 
application that allows users to seamlessly deploy the trained AI 
model, interface directly with a microscope, and analyze the 
microspores and pollen in the captured microscopic field of view 
in real time. This integration bridges the gap between advanced 
machine learning models and routine laboratory workflows, which 
enables data-driven decision-making for in vitro anther culture 
explant selection. Sporesight employs a modular architecture 
comprising five core components, as detailed in the Supplemental 
Material. 
 
Application Interface and Functionality 
Sporesight consists of three core functional components: the 
Configuration page, the Camera View page, and the Analytics 
page, as detailed in the succeeding sections. 
 
1. Configuration Page 
This page enables users to configure the system by uploading the 
trained model (in ONNX format) and a text file containing class 
labels. It also includes controls for adjusting the confidence 
threshold and provides a real-time preview of the model and class 
setup (Figure 5). 
 

 
Figure 5: Configuration Page of Sporesight where the AI model, 
classifications, and confidence scores are defined by the user. 

2. Camera View Page 
This page displays the live feed from the microscope camera, 
provided the device is connected to the IP camera's Wi-Fi hotspot. 
It also shows a preview of the selected model and its classes, and 
enables inference using the ONNX Runtime. Upon completion of 
the inference, a dialog appears allowing users to save or discard the 
image with the detected objects (Figure 6). 
 

 
Figure 6: Camera View Feed View Page (with connection). 

 
3. Analytics Page 
The analytics page presents a summary of detected objects from 
saved images. Users can review and delete individual detection 
records. Clicking any card opens a detailed view dialog displaying 
the full-resolution annotated image, a table of detected classes with 
frequency counts and confidence ranges visualized as progress 
bars, and options to delete individual records (Figure 7). The page 
header displays the total detection count, updating dynamically 

asusers add or remove detections. The Analytics page also includes 
a "Detect an image" button that lets users upload static images for 
inference, providing an alternative to the live camera feed 
workflow. When date folders become empty after deletion 
operations, the system automatically removes them to maintain 
organization.

 
Figure 7: Analytics Page

Performance Evaluation 
To validate Sporesight's real-time capabilities, we conducted 
inference speed benchmarks on a MacBook Air with an Apple M2 
chip (8-core CPU, 8-core GPU, 8 GB unified memory). 

 
Performance measurements were conducted using a representative 
test image (1920×1080 resolution) processed through the complete 
detection pipeline. The YOLOv5 model resized input images to 
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640×640 pixels for inference, with a confidence threshold set to 
0.25. We performed 100 consecutive inference iterations after a 10-
iteration warm-up to ensure stable performance metrics. Each 
iteration included complete processing: ONNX Runtime inference 
execution and post-processing operations (confidence filtering, 
bounding box extraction, and non-maximum suppression). As a 
result, the MacBook Air M2 achieved an average processing time 
of approximately 349 ms per frame, corresponding to 2.9 FPS, 
validating its real-time capability (Table 4). 
 
Table 4: Inference performance benchmarks of Sporesight. 

Hardware 
Configuration 

Image 
Resolution 

Inference + 
Post-

processing 
(ms) 

FPS 

MacBook Air 
M2 (8-core 
CPU/GPU), 
8GB RAM 

1920×1080 → 
640×640 

348.88 ± 
22.11 ms 

 
2.9 

 
Operational Requirements 
Users must prepare two essential configuration files to operate 
Sporesight: 

1. Class Labels File (classes.txt): A plain text file 
containing class names for pollen developmental stages, 
with one class per line. The number of classes in this file 
must exactly match the number of output classes in the 
trained ONNX model. Example format: 

tetrad 
young_microspore 
mid_microspore 
late_microspore 
young_pollen 
midlate_pollen 
mature_pollen 
others 

 
2. ONNX Model File ([model_name].onnx): The trained 

YOLOv5 model exported in ONNX format. Pre-trained 
models for rice are available from the project repository. 

 
Application Installation Packages 
The Sporesight application installation packages are currently 
available only upon request. Once the appropriate Intellectual 
Property Rights protection has been secured, Sporesight will be 
made publicly available and compatible for Windows and Mac 
operating systems in an executable form. 
 
 
CONCLUSION 
 
This study developed Sporesight, a real-time, desktop-compatible 
microspore and pollen classification application that uses machine 
learning to automate the identification of eggplant anthers at 
optimal developmental stages for in vitro culture. By integrating a 
YOLOv5-based object detection model with a microscope-
mounted camera, the system provides researchers at UPLB-IPB 
with an efficient and scalable tool for data-driven explant selection. 
Evaluation results generally demonstrated acceptable accuracy 
(mAP@50 = 0.628), particularly in stages with distinct 
morphological features, and highlight areas for improvement in 
classifying visually similar stages. For future releases, our team 
will build a more robust training dataset to improve the model's 
accuracy and precision. Imbalanced class distributions are 
expected; hence, we will attempt to instruct the model to pay more 
attention to minority classes to reduce inference bias against 
underrepresented groups. We will also merge and consolidate 

biologically distinct classes into subgroups according to 
established eggplant microspore morphologies that are amenable to 
either anther or isolated microspore culture experiments. 
 
Overall, Sporesight addresses a critical bottleneck in doubled 
haploid production and makes a significant contribution to the 
advancement of crop breeding technologies. Future work should 
focus on expanding the training dataset, improving model 
precision, enhancing the database and data analytics, and 
optimizing system usability to support broader implementation in 
agricultural biotechnology research. 
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