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ABSTRACT

Eggplant (Solanum melongena L.) is one of the major vegetable
crops in the Philippines, significantly contributing to agricultural
productivity and rural livelihoods. The economic contribution of
this crop, valued at more than 9 billion pesos in 2024, underscores
the need to continuously develop new and improved varieties that
can adapt to the rapidly changing climate. One of the key strategies
to expedite breeding activities leverages the use of doubled haploid
technology, which requires the use of precise developmental stages
of microspores or pollen for in vitro anther culture. This study
presents Sporesight, a real-time, machine learning-driven desktop
application designed to automate the classification of eggplant
pollen developmental stages using object detection techniques.
Initially, an expertly annotated dataset of 124 unique microscopic
images, containing 3479 instances spanning seven distinct classes
corresponding to eggplant microspore developmental stages, was
used to train an Al model using the YOLOVS algorithm. The model
achieved a mean Average Precision (mAP@0.5) of 0.628, with
high accuracy for morphologically distinct classes but moderate
confusion for visually similar classes. This Al model was then
integrated into an intuitive graphical user interface that provides
image upload and preview, class-wise result visualization, and
inference capabilities for the captured microscopic field of view, at
an average time of 2.9 frames per second. As each captured
microscopic field of view corresponded to a single frame, the
system delivered inference results within 349 milliseconds.
Sporesight provides high-throughput capabilities for selecting
explants with suitable microspore developmental stages for in vitro
culture, thereby contributing to streamlining the efforts to
accelerate the development of climate-smart eggplant varieties.
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INTRODUCTION

In the Philippines, eggplant (Solanum melongena L.) is one of the
major vegetable crops, contributing 228.27 thousand metric tons in
total production volume and valued at more than 9 billion pesos in
2024 (Philippine Statistics Authority, 2024). Its production plays a
significant role in Philippine agriculture, supporting both economic
growth and livelihood security. Therefore, breeding new and
improved varieties that address critical production challenges is
key to sustaining bioeconomies, including the eggplant industry
(Matyska & Jacobi, 2018).

One major prerequisite for a successful eggplant breeding program
is the availability of pure, highly homozygous lines, which are used
as parentals. Pure lines, or inbred lines, are traditionally generated
via successive self-pollination of six to 10 generations (Mir et al.,
2021). However, given the lengthy periods and high costs required
to obtain homozygous parental lines, an alternative strategy is to
produce doubled-haploid (DH) lines to shorten the breeding cycle.
Androgenesis-based techniques, such as in vitro anther culture of
microspores or pollen grains, are among the most widely used
methods for producing DH lines by redirecting the developmental
fate of male gametes toward a sporophytic pathway (Segui-
Simarro, 2021).

The success of haploid induction techniques depends heavily on
culture conditions, the genotype of the donor plant material, and
the developmental stage of the microspores or pollen used for in
vitro culture. In terms of culture conditions, the general
composition of the culture medium and the application of heat
stress treatment have largely remained consistent since the seminal
work of Dumas de Vaulx & Chambonnet (1982), who established
a reliable and reproducible protocol for haploid embryo induction
and doubled haploid plant regeneration in eggplant. Their method
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involved incubating anthers in darkness at 35°C for § days,
followed by culturing at 25°C in a medium supplemented with 2,4-
D and kinetin to promote the formation of microspore-derived
embryos (MDEs).

Meanwhile, the genotype-dependent response of eggplant anthers
to in vitro culture has also been extensively studied (Basay &
ElliAltioglu, 2013; Bat et al., 2022; Rivas-Sendra et al., 2017). In
these studies, the differential sensitivities of the various eggplant
genotypes to androgenesis were attributed to the unique genetic,
hormonal, and physiological background of the donor tissues,
suggesting that the success of an in vitro anther culture is not solely
determined by the culture conditions but also by the intrinsic
biological state of the explant during the culture initiation.

The developmental stage of microspores or pollen at the time of
anther excision and culture initiation is another major factor
influencing the rate of MDE formation. It is generally accepted that
the most responsive stage corresponds to the period around the first
pollen mitosis, when the microspores begin to develop vacuoles
and form young bicellular pollen (Mir et al., 2021; Rotino, 2016;
Salas et al., 2012). Morphological indicators such as bud and anther
lengths are commonly used to approximate the developmental
stage of microspore or pollen within the anther locules; however,
this approach does not provide an absolute determination of their
exact stage.

Cytological characterization of anthers containing inducible
developmental stages of microspores or pollen is often required to
ensure the use of appropriately staged donor materials for culture
initiation (Mir et al., 2021; Rotino, 2016; Salas et al., 2012). This
process, however, demands a high level of technical expertise and
typically involves routine use of toxic or hazardous staining
reagents such as acetocarmine or fluorescent dyes like DAPI (4',6-
diamidino-2-phenylindole) and FDA (Fluorescein Diacetate),
which require an expensive epifluorescence microscope for
viewing. These limitations underscore the need for automated and
precise tools that can reliably determine microspore and pollen
developmental stages while reducing technical burden and
subjectivity.

Convolutional Neural Networks (CNNs), a cornerstone of deep
learning, have shown remarkable success in image classification
and object detection tasks by automatically learning hierarchical
features from raw image data. As demonstrated by Garcia-Fortea
et al. (2020) through the Microscan system, these approaches can
accurately and efficiently identify pollen developmental stages
with minimal human intervention. Despite the success of deep
learning in microspore characterization, several critical gaps
remain, which prevent its widespread adoption in routine breeding
workflows.

First, the existing system operates as a post-processing tool that
requires high-performance computing; thus, it lacks the capability
for real-time inference directly from microscope feeds during live
screening. Second, there is a scarcity of user-friendly software
interfaces that bridge the gap between complex Al architectures
and laboratory technicians who may lack programming expertise.
Third, the dataset of the existing system is not publicly available,
and the models were trained on foreign germplasm, limiting their
generalization to the specific local genotypes used in Philippine
breeding programs. To expound, while the Microscan system
yielded highly accurate predictions (0.863 mAP), it used the
RetinaNet architecture, which is typically computationally

intensive and designed for high-throughput batch analysis. In
similar studies comparing the performance of various object
detection algorithms, RetinaNet performed at only up to a third of
the frames per second of You Only Look Once (YOLO) (Tan et al.,
2021; Yinkfu et al., 2025). This system was also presented
primarily as a research methodology, with unclear guidance on
how non-expert end users can use it with no extensive knowledge
of computer programming. Regarding data annotation, Microscan
relied on custom labeling workflows (an undisclosed software
developed by a Spanish company called SomData Analytics) that
are not readily available as open-source tools.

To address the challenges mentioned, we developed an integrated
microspore characterization platform called Sporesight. Here, we
took a different approach to creating a machine learning—driven
computer vision inference system using YOLOvS5. We then
integrated our machine learning model into an intuitive graphical
user interface to automate the complex characterization of
microspore and pollen developmental stages, tailored to the
biological nuances of eggplants grown in the Philippines. Our
approach ensured that our model captured the specific microspore
or pollen morphology of the genotype we used, which may differ
from that of the accessions used in the previous European study.

MATERIALS AND METHODS

Sporesight's development pipeline followed a sequential workflow,
beginning with eggplant material establishment and microscopic
image acquisition, during which microspore and pollen images
were collected and expertly annotated to generate training data.
The annotated dataset was used to train the machine learning
model, with iterative validation to optimize hyperparameters and
ensure robust generalization, followed by performance evaluation
using an independent test set. The validated model was then
deployed onto a target inference platform and integrated into a
user-friendly desktop application to enable real-time prediction of
pollen developmental stages (Figure 1).

Eggplant Material ode! Model s
Establishment; Image el el ystem
Data Collection and Training Evaluation Deployment Integration
Annotation

Figure 1: Development pipeline for the real-time machine learning-driven
computer vision inference system for eggplant pollen developmental
stages.

Establishment of Plant Materials, Image Dataset Collection,
and Annotation

Donor eggplant plants (cv. Mistisa; acc. PH11424) were grown
under controlled screenhouse conditions at the Institute of Plant
Breeding, College of Agriculture and Food Science, University of
the Philippines Los Bafios. Solitary floral buds of varying sizes
were randomly collected from ten (10) different plant replicates to
ensure representative sampling. Upon dissection, anthers were
immediately squashed on clean glass slides and examined under a
phase-contrast microscope (Olympus CKX53). For each sample,
five randomly selected microscopic fields were captured at 40x
objective magnification. The resulting images and instances were
individually annotated using Labellmg, a Python-based graphical
annotation tool, following the morphological descriptors reported
by Salas et al. (2012) (Table 1).
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Table 1: Summary of distinct features of different microsporeand pollen developmental stages (Tetrads, Young Microspore, Mid-Vacuolate Microspore,
Young Bicellular Pollen, Mid-late Bicellular Pollen, Mature Pollen), as described by Salas et al. (2011).

DEVELOPMENTAL STAGE

DISTINCT FEATURES

Tetrads

Young microspore
and central nucleus

Mid-Vacuolate Microspore

Tetrad of cells enclosed in a thick, callose envelope

Free, unicellular microspores with polygonal shape, thin cell wall, and reduced size; large,

Free, unicellular microspores with thicker cell walls, rounder shape, and increased diameter;

vacuolization may be visible

Late/Vacuolate microspore

Free, unicellular microspores with a well-developed cell wall, off-centered nucleus, and are

larger in diameter; the presence of a large, cytoplasmic vacuole

Young Bicellular Pollen

Mid-late Bicellular Pollen
opacity

Mature Pollen
contrast microscope

Round-shaped and relatively bigger in size; has two different nuclei

Larger in size, has a cytoplasmic vacuole, with one nucleus migrating at the center; increased

High opacity, has a centered nucleus, remarkably denser; appears nearly black under a phase

One hundred twenty-four (124) unique images, with approximately
20 microspores per microscopic field of view, were collected and
annotated using the established descriptors. Annotations were
categorized into seven distinct developmental classes: tetrad,
young microspore, mid microspore, late microspore, young pollen,
mid-late pollen, and mature pollen. To minimize misclassification,
deformed structures, imaging debris, and artifacts were
consolidated into a single category designated as 'others'.

A separate test dataset consisting of 78 images was withheld from
the training process to validate the Al model. The images from this
test dataset also contained at least 20 instances for each of the seven
developmental classes, as well as the 'others' category, to ensure
balanced evaluation across all stages

Development Tools Used

The model training and validation processes were conducted on a
machine equipped with an NVIDIA® GTX 1070 GPU (6 GB
VRAM), 16 GB of RAM, and a 12-core Intel® Core™ i7 processor
(2.5 GHz). For real-time image acquisition, a ToupTek®
XCAM1080PHB camera was mounted onto the Olympus® phase-
contrast microscope. Development and integration of the final
application were carried out on a laptop with an AMD® Ryzen™ 9
processor and 32 GB RAM.

Sporesight was developed using Python 3.9.6 and PyTorch 2.0,
with Visual Studio Code™ as the primary development
environment. Core dependencies included OpenCV 4.11.0 for
microscope camera image acquisition, PySide6 6.9.0 for graphical
user interface development, ONNX Runtime 1.19.2 for real-time
model inference, and NumPy 1.26.4 for numerical operations.

Although the YOLOvVS architecture was initially evaluated,
YOLOVS was selected for final deployment due to its greater
compatibility with the required OpenCV—PyQt integration pipeline
and its more stable ONNX export workflow at the time of
development. These considerations were vital given the need for a
reliable, real-time inference system that could interface directly

with microscope camera hardware within a desktop application. In
addition, YOLOVS5 exhibited fewer dependency conflicts with the
specific library versions required for image acquisition and GUI
rendering, enabling a more robust and reproducible deployment.
While model training was performed on a high-performance
workstation, the final application was designed to run efficiently
on standard laboratory desktop computers with limited
computational resources, ensuring accessibility and stable
performance for routine use by researchers and technicians.

Model Training and Hyperparameters

The annotated dataset was used to train a YOLOVS object detection
model using the Ultralytics framework, and the resulting model
used the following hyperparameters, summarized in Table 2. Input
images were resized to 640x640 pixels to match the model's
expected input dimensions.

Table 2: YOLOv5 training and optimization configuration
hyperparameters.

Parameter Value

Batch 64

Sub-divisions 64

Learning Rate 0.001

Momentum 0.949

Decay 0.0005

Mosaic, HSV adjustments (saturation:

Data Augmentation 1.5, exposure: 1.5, hue: 0.1)

Al Model Training Pipeline

The process began with dataset preparation, where annotated
images from UPLB-IPB were preprocessed and structured for
YOLO training. The YOLOvV5 model was iteratively trained and
validated using custom scripts, with each iteration refining
detection accuracy and class sensitivity. Once performance
benchmarks were achieved, the trained model was converted to the
ONNX format and integrated into the desktop application for real-
time inference.
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Evaluation of the Model

The YOLOv5 model was evaluated using precision and recall—
two key metrics for object detection systems. A precision-recall
(PR) curve was used to visualize the trade-off between these
metrics across different confidence thresholds. This allowed for
fine-tuning of the model to ensure optimal detection sensitivity and
specificity, especially across closely related stages of microspore
development (Huda, 2024).

RESULTS AND DISCUSSION

Dataset Characteristics

During the course of the study, we collected and individually
annotated a total of 3479 eggplant microspores and pollen, with the
following class distribution: 106 tetrads, 851 young microspores,
478 mid microspores, 268 late microspores, 167 young pollen, 786
mid-late pollen, and 358 mature pollen. We also noted 465 debris,
artifacts, and deformed structures across the image dataset. The
representative images of various eggplant microspore and pollen

morphologies in developing floral organ structures are shown in
Figure 2.

Owing to the inherent developmental asynchrony of microspores
and pollen within floral tissues, the resulting dataset exhibited an
uneven class distribution. Such imbalance can bias model
predictions toward more frequently represented classes (Leevy et
al., 2018); however, the observed class ratios fall well below the
thresholds commonly associated with severe class imbalance
(majority-to-minority ratios of 100:1 to 10,000:1) as defined by He
and Garcia (2009). Consequently, the dataset was deemed suitable
for training and used to establish a proof-of-concept model.

Al Model Training and Deployment

The microspore classification model developed with YOLOV5 was
evaluated on the designated test set using the confusion matrix and
precision-recall (PR) curve metrics. Such metrics provide a
comprehensive understanding of the model's performance across
per-class accuracy, precision, and recall. The overall results are
summarized in Table 3.

Table 3: Per-class performance metrics of the YOLOv5 model for eggplant microspore and pollen classification. Precision, recall, and F1 scores are
computed at a confidence threshold of 0.5, while AP (Average Precision) represents the area under the precision-recall curve.

Class Precision Recall F1 Score AP
Tetrad 0.6634 0.9710 0.7882 0.935
Young Microspore 0.5050 0.3054 0.3806 0.934
Mid Microspore 0.3232 0.2254 0.2656 0.545
Late Microspore 0.2020 0.4878 0.2857 0.301
Young Pollen 0 0 0 0.450
Mid-late Pollen 0.5500 0.3022 0.3901 0.687
Mature Pollen 0.4900 0.4188 0.4516 0.323
Others 0.8100 0.6864 0.7431 0.847
Mean 0.4429 0.4246 0.4131 0.628

Confusion Matrix Analysis

The confusion matrix revealed differential classification
performance across different pollen developmental stages (Figure
3). The YOLOvVS model achieved high recall for visually distinct
classes, including the others category (81%) and the tetrad stage
(67%). In contrast, substantial misclassification occurred between
classes representing adjacent developmental stages. Notably, 49%
of young microspores were misclassified as mid microspores,
while 55% of mid microspores were predicted as young
microspores. A similar reciprocal confusion was observed between

mid-late pollen and mature pollen, with nearly half of the instances
in each class misidentified as the other (Figure 3).

These misclassifications likely reflect the fine-grained, continuous
nature of microspore and pollen development, in which adjacent
stages exhibit subtle morphological differences that are difficult to
resolve visually. Developmental asynchrony within individual
anthers further contributes to overlapping phenotypic features
among stages (Salas et al., 2012; Adhikari & Kang, 2017; Pagalla,
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2023). Nonetheless, this behavior does not undermine the intended
application of the model for identifying stage ranges suitable for in
vitro culture; instead, the tendency to interchange predictions
between neighboring stages captures biologically meaningful
transitions rather than enforcing artificially discrete class
boundaries. Overall, the confusion matrix suggests that the primary
limitation lies in the inherent visual similarity of adjacent
developmental stages, highlighting the potential benefit of merging
ambiguous classes and improving dataset balance in future
iterations.

Confusion Matrix
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Figure 3: Confusion matrix of the YOLOv5 model illustrating actual vs.
predicted classification rates for pollen developmental stages.

Precision-Recall (PR) Analysis

The Precision-Recall (PR) curve (Figure 4) extends the confusion
matrix by showing how model confidence varies across classes.
With a mAP@0.5 of 0.628, the model shows moderate success but
exhibits apparent performance differences. It performs best on
visually distinct stages, such as the tetrad (0.935 AP) and young
microspore (0.934 AP), where it maintains high precision.
However, it struggles on similar-looking stages, such as the late
microspore (0.301 AP) and mature pollen (0.323 AP); for these
classes, any gain in recall results in a sharp drop in precision. When
combined with the confusion matrix, these results reveal a deeper
trend: even for high-scoring classes such as the young microspore,
the model often makes high-confidence errors, frequently
misclassifying mid microspores. This pattern of confident
misidentification also appears in the mid-late and mature pollen
stages.

1.0

Precision-Recall Curve

—— tetrad 0.935
young_microspore 0.934
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Figure 4: Precision-Recall performance across various pollen
developmental stages, showing high precision for the tetrad and young
microspore classes contrasted against lower performance in late
microspore and mature pollen stages.

In terms of practical utility, the observed ambiguity and
imprecision between developmentally close microspore and pollen
classes have minimal negative impact on the model's intended
application. In practice, anthers containing young to mid
microspore stages are typically selected for in vitro culture, as these
developmental phases naturally progress toward the inducible late
microspore to young bicellular pollen stages during culture
incubation (Salas et al., 2012). This means that even if the model
occasionally fails to distinguish young from mid microspores, it
would still effectively identify anthers within the optimal
developmental window for androgenic induction. Meanwhile,
discrepancies in discrimination between the late and mature pollen
stages are not particularly critical, as these stages are already
differentiated and not amenable to in vitro culture. The observed
classification overlaps remain acceptable and do not compromise
the model's practical value for guiding explant selection for in vitro
anther and isolated microspore culture experiments.

The overall results highlight the viability of using machine
learning, specifically YOLOVS5, for classifying the developmental
stages of eggplant microspores and pollens. The model
demonstrated acceptable overall accuracy, with mAP@0.5 = 0.628,
which aligns with the performance expectations for complex
microscopic classification tasks involving morphologically similar
cases. Microscopic image detection mAP values vary widely
depending on task complexity and specificity, ranging from
approximately 24% for mixed cell-instance segmentation across 30
heterogeneous classes to over 95% for specialized single-cell-type
detection tasks.

For tasks involving morphologically distinct cell types, recent
studies have reported substantially higher mAP wvalues. For
instance, leukemia cell detection in bone marrow microscopy
achieved mAP values of 95.9% for acute lymphoblastic leukemia
and 98.6% for chronic lymphocytic leukemia using a spatially-
guided learning network (Mei et al., 2025). On the other hand,
findings from Sazak and Kotan (2024) show that blood cell
classification tasks using YOLO architectures have similarly
reported mAP values exceeding 93% when discriminating between
visually distinct cell categories such as red blood cells, white blood
cells, and platelets. However, these high-performance results
reflect the detection of clearly differentiated cell types rather than
the fine-grained discrimination of temporal stages within a
continuous biological process.

In more comparable scenarios involving subtle morphological
distinctions, performance metrics are considerably lower. Sperm
detection in testicular biopsy images achieved a mAP of 74.1%
using a two-stage deep detection pipeline (Wu et al., 2021).
Similarly, histopathology nuclei segmentation tasks have reported
mAP values of 38-39% on breast tissue datasets (Lagree et al.,
2021), while mixed microscopy cell segmentation across 30
diverse classes achieved a mean average precision of only 24.37%
(Khalid et al., 2021). These benchmarks highlight the inherent
difficulty of microscopic classification tasks where visual
similarity between classes is high and morphological boundaries
are ambiguous.

Given that our classification task involves discriminating between
adjacent developmental stages with subtle morphological
differences, the observed mAP@0.5 of 0.628 represents acceptable
performance for this proof-of-concept study. It falls within the mid-
to-upper range of comparable fine-grained microscopic
classification tasks. The model demonstrated robust performance
across morphologically distinct classes, such as the tetrad and
young microspore. Conversely, performance on visually similar
classes such as late microspore (AP 0.301) and mature pollen (AP
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0.323) was substantially lower, reflecting the inherent difficulty of
discriminating between closely related developmental stages.

The misclassifications observed between visually indistinguishable
stages (e.g., young microspore vs. mid microspore) underscore
limitations in feature representation—a challenge frequently
encountered in microscopic image classification where intra-class
variance and inter-class similarity are pronounced due to the
constraints produced by the restrictions in viewpoints from which
the microscope images are captured (Venkataramanan et al., 2021).

Desktop Application Development

Integrating the Al prediction model into a user-friendly desktop
graphical interface 1is essential to translate YOLOvVS's
computational power into a practical, accessible tool for bench
researchers and laboratory technicians engaged in in vitro anther
culture experiments. To this end, we developed an intuitive
application that allows users to seamlessly deploy the trained Al
model, interface directly with a microscope, and analyze the
microspores and pollen in the captured microscopic field of view
in real time. This integration bridges the gap between advanced
machine learning models and routine laboratory workflows, which
enables data-driven decision-making for in vitro anther culture
explant selection. Sporesight employs a modular architecture
comprising five core components, as detailed in the Supplemental
Material.

Application Interface and Functionality

Sporesight consists of three core functional components: the
Configuration page, the Camera View page, and the Analytics
page, as detailed in the succeeding sections.

1. Configuration Page

This page enables users to configure the system by uploading the
trained model (in ONNX format) and a text file containing class
labels. It also includes controls for adjusting the confidence
threshold and provides a real-time preview of the model and class

setup (Figure 5).

3. Analytics Page

The analytics page presents a summary of detected objects from
saved images. Users can review and delete individual detection
records. Clicking any card opens a detailed view dialog displaying
the full-resolution annotated image, a table of detected classes with
frequency counts and confidence ranges visualized as progress
bars, and options to delete individual records (Figure 7). The page
header displays the total detection count, updating dynamically

Detections (29 objects, 2 classes)

swam

Flgure 7: Analytics Page

Performance Evaluation

To validate Sporesight's real-time capabilities, we conducted
inference speed benchmarks on a MacBook Air with an Apple M2
chip (8-core CPU, 8-core GPU, 8 GB unified memory).

= & Sporesight

= & sporesight

Configuration

Input your preferrec ONNX model, classes, and confidence score

Current Model File:  Select an ONNX model file (.. yolovsionn)

Selecta

Classes: None

Confidence Score - 025

Figure 5: Configuration Page of Sporesight where the Al model,
classifications, and confidence scores are defined by the user.

2. Camera View Page

This page displays the live feed from the microscope camera,
provided the device is connected to the IP camera's Wi-Fi hotspot.
It also shows a preview of the selected model and its classes, and
enables inference using the ONNX Runtime. Upon completion of
the inference, a dialog appears allowing users to save or discard the
image with the detected objects (Figure 6).
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= & Sporesight
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Ié‘ig'u're 6: Camera View Feed View Page (with connection).

asusers add or remove detections. The Analytics page also includes
a "Detect an image" button that lets users upload static images for
inference, providing an alternative to the live camera feed
workflow. When date folders become empty after deletion
operations, the system automatically removes them to maintain
organization.

Analytics - 41 Detections
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Performance measurements were conducted using a representative
test image (1920%1080 resolution) processed through the complete
detection pipeline. The YOLOVS5 model resized input images to

20

Volume No. 19 (Supplement) | 2026

SciEngg]
Special Issue on Cell Biology



640x640 pixels for inference, with a confidence threshold set to
0.25. We performed 100 consecutive inference iterations after a 10-
iteration warm-up to ensure stable performance metrics. Each
iteration included complete processing: ONNX Runtime inference
execution and post-processing operations (confidence filtering,
bounding box extraction, and non-maximum suppression). As a
result, the MacBook Air M2 achieved an average processing time
of approximately 349 ms per frame, corresponding to 2.9 FPS,
validating its real-time capability (Table 4).

Table 4: Inference performance benchmarks of Sporesight.

Inference +
Hardware Image Post- FPS
Configuration Resolution processing
(ms)
MacBook Air
M2 (8-core | 1920x1080 — g;‘glfgmi 2o
CPU/GPU), 640%x640 ’ ’
8GB RAM

Operational Requirements
Users must prepare two essential configuration files to operate
Sporesight:

1. Class Labels File (classes.txt): A plain text file
containing class names for pollen developmental stages,
with one class per line. The number of classes in this file
must exactly match the number of output classes in the
trained ONNX model. Example format:

tetrad
young_microspore
mid_microspore
late_microspore
young_pollen
midlate_pollen
mature_pollen
others

2. ONNX Model File ([model name].onnx): The trained
YOLOVS5 model exported in ONNX format. Pre-trained
models for rice are available from the project repository.

Application Installation Packages

The Sporesight application installation packages are currently
available only upon request. Once the appropriate Intellectual
Property Rights protection has been secured, Sporesight will be
made publicly available and compatible for Windows and Mac
operating systems in an executable form.

CONCLUSION

This study developed Sporesight, a real-time, desktop-compatible
microspore and pollen classification application that uses machine
learning to automate the identification of eggplant anthers at
optimal developmental stages for in vitro culture. By integrating a
YOLOvS5-based object detection model with a microscope-
mounted camera, the system provides researchers at UPLB-IPB
with an efficient and scalable tool for data-driven explant selection.
Evaluation results generally demonstrated acceptable accuracy
(mAP@50 = 0.628), particularly in stages with distinct
morphological features, and highlight areas for improvement in
classifying visually similar stages. For future releases, our team
will build a more robust training dataset to improve the model's
accuracy and precision. Imbalanced class distributions are
expected; hence, we will attempt to instruct the model to pay more
attention to minority classes to reduce inference bias against
underrepresented groups. We will also merge and consolidate

biologically distinct classes into subgroups according to
established eggplant microspore morphologies that are amenable to
either anther or isolated microspore culture experiments.

Overall, Sporesight addresses a critical bottleneck in doubled
haploid production and makes a significant contribution to the
advancement of crop breeding technologies. Future work should
focus on expanding the training dataset, improving model
precision, enhancing the database and data analytics, and
optimizing system usability to support broader implementation in
agricultural biotechnology research.
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